The Role of Climate Tech in Decarbonising the Public Sector

Pete Nisbet


Subscribe Contact us

In their 2020 report, the Climate Change Committee emphasised the importance of local authorities in national decarbonisation efforts and the UK’s journey to net zero. Quoting the capacity to impact roughly one third of UK emissions, the report highlighted the significant remit of local authorities, including local transport, social housing, and waste, as well as their influence over local businesses and communities.


Unlike private entities and businesses – which also contribute significantly to UK emissions yet often exhibit limited willingness to respond* – local authorities have demonstrated a clear commitment to addressing climate change. Out of 394 local authorities, 327 have declared a climate emergency, with 114 setting net-zero targets and 280 developing actionable plans.


This highlights the readiness of local authorities to act; however, translating this enthusiasm into meaningful outcomes requires clearer direction and support from central government. While the new government has shown a willingness to address these challenges, the reality is that news policies and funding mechanisms take time to develop and implement. Bridging this gap between ambition and action will be crucial to unlocking the full potential of local authorities in driving the UK’s net-zero agenda.


One stand-out and wide-reaching solution to this is climate technology. With the ability to process data more effectively, identify problems faster, and test solutions virtually, technology provides an efficient, transformative vessel for decarbonisation and net zero strategies. In a recent survey, 40% of senior executives said they believe that digital technologies are already having a positive impact on their sustainability goals. And, with the ability to initiate significant carbon reductions across energy, materials, and mobility, and save money at the same time, climate tech has the potential to provide the public sector with the resources it needs toward net zero.


*According to a recent analysis of the FTSE 250 conducted by our sustainability sister-company, edenseven, 41% of the FTSE 250 do not have a net zero target, and those who do have delayed it by an average of 13 months.

 

Climate Technology


According to a study by ICG, decarbonisation is accelerated in heavily digital economies, but with no risk or loss to finances. Between 2003 and 2019, the most digitalised economies in the EU reduced their greenhouse gases (GHGs) by 25%, while continuing to grow their economies by 30%. For comparison, the least digital economies reduced their GHGs by only 18%, and grew their economies by the same amount.


Climate technology can be categorised under three main areas:


  • Decision Making Technologies (such as Digital Twin, Artificial Intelligence, and Machine Learning)


  • Enabling Technologies (Cloud, 5G, Blockchain, Augmented/Virtual Reality, etc.)


  • And Sensing & Control Technologies (eg. Internet of Things, Drones & Imaging, and Automation & Robotics)


In this article, we will discuss how each technology can be, and is being, specifically applied to climate strategies, and ultimately how these practices can be leveraged to benefit the Public Sector.


Enabling Technologies


By increasing efficiency, Enabling Technologies have the potential to accelerate decarbonisation with specific applications in the energy sector. For example, in a study by the World Economic Forum which placed the impact of digital technologies at a reduction of 8% on GHGs by 2050, they named 5G as a boost to energy efficiency in highly networked environments.


Similarly, blockchain technologies promote circularity, transparency, and security, all of which can be used to track carbon emissions within an organisation. This is particularly unique for its ability to measure Scope 3 emissions including the supply chain, which are notoriously difficult to monitor as they are indirect emissions, as opposed to Scopes 1 and 2 which are associated directly with an organisation’s operations.


Cloud technology also has numerous applications in climate endeavours, including grid management, smart meters, asset planning tools, solar propensity modelling, and methane tracking.


Sensing Technologies


Sensing technologies such as Internet of Things (IoT)-enabled sensors, imaging, and geolocation have the capacity to support climate strategies through their ability to gather real-time data and drive decision-making. Specifically, this has applications in the transport industry, improving route optimisation and decreasing emissions across both rail and road.


Decision Making Technologies


As useful and beneficial as all of these technologies are for accelerating sustainability strategies, their efficacy is predicated on beginning with a strong foundation. One particularly prevalent technology which can provide this comes in the form of the decision-making technology, Artificial Intelligence (AI).


According to a collaborative study by the World Economic Forum and Accenture, AI alone has the potential the reduce global GHG emissions by 4% by 2030. Even greater, CapGemini places the figure at 16% for AI’s climate potential across multiple sectors.


This is due to the substantial boost in efficiency that AI provides when integrated into a business or organisation. This is universal regardless of sector or industry, however it poses the most significant environmental benefit to energy-intensive systems, allowing them to limit their emissions by reducing the energy required to complete their operations.


The most pressing example of this is the manufacturing industry, which can employ AI in order to propel the efficacy of their process optimisation and model production lines, as well as using Machine Learning (ML) to streamline demand forecasting.


However, the efficacy of AI, ML, and other decision-making technology depends upon robust data. Between identifying and tracing source materials, optimising routes, and enhancing efficiency, access to clear and solid data is crucial for building streamlined solutions and a direct path to net zero.


Though not wholly reliant on AI, one example of this data-intuiting technology is cero.earth, the in-house carbon accounting and management platform from edenseven which is been funded by InnovateUK as one of their seven flagship ‘net zero living programmes’. Dynamic and intuitive, and designed to work specifically in the public sector, cero.earth gathers holistic data across all three Scopes of emissions in order to provide an organisation with actionable outcomes to propel them toward net zero. This provides the entity with the ability to track their progress and easily report developments to stakeholders, providing complete control over their climate journey. Thus, cero.earth is the optimal starting point for organisations to understand their current position, future opportunities, and roadmap to net zero.


Decarbonising the Public Sector


Through the combined benefits outlined in this article of transparency, efficiency, and clarity, climate technology has the potential to provide the direction toward net zero that the public sector could benefit from. In particular, climate tech has attractive applications across major emission areas including transport, waste, and infrastructure:


  • Transport: As well as the aforementioned ability of sensing technologies to benefit route optimisation in local rail and road networks, there are already numerous examples of transport technology with sustainable benefits such as electric vehicle charging and energy management.


  • Buildings: In buildings, it is easy to initiate decarbonisation through better controls such as thermostats, air quality monitoring, and smart parking.


  • Waste: Forecasting technologies like AI and ML can support public sector bodies to reduce waste by providing an overview of resources and accurately projecting their usage.


Furthermore, technology can improve the energy efficiency of other public sector organisations such as healthcare. In a survey conducted by Bain & Company, healthcare companies were asked which technological application they had trialled in the previous three years (as of 2022). Innovative solutions included the use of big data to improve medical R&D, digital interfaces for electronic records and telecare, and integrating centralised information on healthcare providers, drugs, and treatments. All of these improve efficiency, and ergo reduce emissions.


The Responsibility of the Public Sector


The public sector also has a part to play itself in improving access and innovation to these technologies, in order to increase their availability and applications to its industries and operations. The World Economic Forum highlighted three ways in which the public sector can bolster climate investment, namely the use of incentives to drive activity from technology suppliers and financial investors; create longer-term certainty through regulatory support, providing security for technology companies to develop their solutions; and set better standards to credentialise green products and services.


These objectives are particularly prescient for those technologies which present a double-edged sword to sustainable initiatives. For example, though Enabling Technologies such as data centres, as explained earlier in this article, have the potential to boost efficiency within highly networked areas of the public sector, they also come with their own climate considerations. As of 2022, data centres account for 1% of the world’s electricity consumption, and 0.5% of CO2 emissions, figures which are more concentrated when analysing Europe in isolation, where a 2020 EU Commission Study revealed that data centres use 2.7% of the continent’s electricity demand, expected to reach 3.2% by the end of 2030 if they continue at the current rate.


This is not the end of the story, however, as technological innovations are being accelerated to offset this carbon contribution. Namely, the replacement of liquid cooling with air cooling provides a much more sustainable alternative to maintaining the efficiency of data centres, which relies on them not overheating. Air cooling leverages variable-speed fans which can run at reduced speeds to match a reduced cooling requirement; paired with strategic containment, this can create ‘hot’ and ‘cold’ aisles that produce a tailored thermal profile and ensure efficient cooling.


Though the growth and application of technologies such as these is largely dependent on bigger organisations, the public sector can still play its part by spurring and motivating the momentum of their development.


Financial Benefits to the Public Sector


The public sector itself also has numerous financial benefits to expect from increased sustainable investment, particularly in climate tech. As aforementioned, a study by ICG revealed that digital economies are able to reduce their GHGs by 25%, while increasing their economies by 30%. A report from the Institute of Local Government provided insight into these benefits, highlighting the role of technology as a crucial component:


  • Energy Efficiency: The Institute listed the replacement of outdated lighting fixtures in streetlights with more energy efficient LED bulbs as a quick way to save money, as well as improving street safety. This is heightened in combination with sensing technologies, such as motion detectors and dimmers. The City of Sacramento, for example, has been able to save an average of $302,800 annually through this change.


  • Transportation: Encouraging and facilitating the use of sustainable transport options comes with the economic benefits of conserving fuel and cutting fuel costs, reducing the health impacts of air and water pollution – and ergo saving on healthcare costs – and reducing traffic congestion, making streets safer for pedestrians and transit users alike.


Overall, increasing efficiency and sustainability through climate tech means that less funding has to be allocated to considerations such as the cost of water, energy, and infrastructure development and maintenance. These savings can then be reinvested into more targeted initiatives which in themselves can spur economic and environmental development, as well as increasing financial stability.


An increased priority and emphasis on sustainability also has the economic benefit of producing green jobs. Defined as any job which ‘contribute[s] to preserving or restoring the environment and our planet’, green jobs go hand-in-hand with the introduction of climate tech, including environmental technicians, wind turbine or solar panel technicians, green construction managers, and nuclear engineers, to name a few.


The Role of Cities


In particular, cities are public sector bodies equipped with the potential to create an immense environmental impact. In a TedTalk from Marvin Rees, on the Board of Directors for Cambridge Management Consulting, he explains that, despite occupying less than 3% of the earth’s land surface, cities are home to around 55% of the world’s population, are responsible for around 75% of CO2 emissions, as well as being prodigious emitters of nitrogen dioxide and methane, and consume 80% of the world’s energy.


However, Marvin explains, due to their reach, size, density, close proximity to leadership, adaptability, and capacity for reinvention, they have a vast capacity to manage those statistics. Attributing much of this potential directly to technological innovation, Marvin lists several of the technologies outlined in this article as being particularly accessible to cities: their population density makes public transport more accessible and cost effective, renewable investment is more financially attractive in large-scale markets, and the heightened presence of a circular economy brings greater benefits to waste management and recycling, in which goods are reused, and unavoidable waste such as food waste can be processed, for example as fertiliser.


Providing inspiration from a global perspective, Marvin names technological examples from around the world:


  • Malmö: Malmö has developed a heat network that is fed by heat generated by processed waste; they intend to be 100% powered by renewable or recycled heat by 2030.


  • Oslo: Oslo is subsidising electric vehicles and charging points, as well as introducing a circular waste management system and the purchase of a biogas plant.


  • Bogota: Bogota has introduced a bus rapid transit system and have one of the largest fleets of electric buses in Latin America.


Innovations such as these are especially concentrated in Smart Cities, defined as cities which leverage information and communication technology to improve operational efficiency with the twin aims of improving economic growth and quality of life. As such, one of their most prescient objectives is environmental and sustainable development.


Conclusion


As this article has outlined, the only thing decelerating the public sector on its journey to net zero is a lack of direction, clarity, and security – technology has the potential to bridge this gap by providing transparency and efficiency. Through the differing and wide-reaching applications of foundational, decision making, enabling, and sensing and control technologies, the public sector can decarbonise across numerous emission-contributing factors. While it is worth noting that the technologies listed throughout this article do not in themselves offer a one-size-fits-all approach, their numerous benefits and uses at least contribute greatly to developing the framework for a coordinated approach.


Furthermore, they also possess incredibly financial and economic benefits to public sector entities, increasing employment through the availability of green jobs, as well as saving money through efficiency which can be reallocated to other initiatives.


For more information on the power of climate technologies such as cero.earth, visit the website for our sister-company, edenseven, here: https://www.edenseven.co.uk/cero-earth


For guidance on how to navigate the public sector, contact Craig Cheney, Managing Partner, here: https://www.cambridgemc.com/people/craig-cheney


Contact - AI at the Edge article

Subscribe to our Newsletter

Blog Subscribe

SHARE CONTENT

Neon letters 'Ai' made from stacks of blocks like a 3D bar graph
by Darren Sheppard 4 December 2025
What is the Contract Lifecycle Management and Why does it Matter? The future success of your business depends on realising the value that’s captured in its contracts. From vendor agreements to employee documents, everywhere you look are commitments that need to be met for your business to succeed. The type of contract and the nature of goods or services it covers will determine what sort of management activities might be needed at each stage. How your company is organised will also determine which departments or individuals are responsible for what activities at each stage. Contract Lifecycle Management, from a buyer's perspective, is the process of defining and designing the actual activities needed in each stage for any specific contract, allocating ownership of the activities to individuals or groups, and monitoring the performance of those activities as the contract progresses through its lifecycle. The ultimate aim is to minimise surprises, ensure the contracted goods or services are delivered by the vendor in accordance with the contract, and realise the expected business benefits and value for money. The Problem of Redundant Spend in Contracts Despite the built-in imbalance of information favoring suppliers, companies still choose to oversee these vendors internally. However, many adopt a reactive, unstructured approach to supplier management and struggle to bridge the gap between contractual expectations and actual performance. Currently, where governance exists, it is often understaffed, with weak, missing, or poorly enforced processes. The focus is primarily on manual data collection, validation, and basic retrospective reporting of supplier performance, rather than on proactively managing risk, relationships, and overall performance. The amount of redundant spend in contracts can vary widely depending on the industry, the complexity of the contracts, and how rigorously they are managed. For further information on this, Cambridge MC’s case studies provide insights into typical ranges and common sources of redundant spend. As a general estimate, industry analysts often state that redundant spend can account for as much as 20% of total contract value. In some cases, especially in poorly managed contracts, this can be much higher. What is AI-driven Contract Management? Artificial Intelligence (AI) is redefining contract management, transforming a historically time-consuming and manual process into a streamlined, efficient, and intelligent operation. Traditionally, managing contracts required legal teams to navigate through extensive paperwork, drafting, reviewing, and monitoring agreements — a process prone to inefficiencies and human error. With the emergence of artificial intelligence, particularly generative AI and natural language processing (NLP), this area of operations is undergoing a paradigm shift. This step change is not without concerns however, as there are the inevitable risks of AI hallucinations, training data biases and the threat to jobs. AI-driven contract management solutions not only automate repetitive tasks but also uncover valuable insights locked up in contract data, improving compliance and reducing the risks that are often lost in reams paperwork and contract clauses. Put simply, AI can automate, analyse, and optimise every aspect of your contract lifecycle. From drafting and negotiation to approval, storage, and tracking, AI-powered platforms enhance precision and speed across these processes; in some cases reducing work that might take several days to minutes or hours. By discerning patterns and identifying key terms, conditions, and concepts within agreements, AI enables businesses to parse complex contracts with ease and efficiency. In theory, this empowers your legal and contract teams (rather than reducing them), allowing personnel to focus on high-level tasks such as strategy rather than minutiae. However, it is important to recognise that none of the solutions available in the marketplace today offer companies an integrated supplier management solution, combining a comprehensive software platform, capable of advanced analytics, with a managed service. Cambridge Management Consulting is one of only a few consultancies that offers fully integrated Contract Management as a Service (CMaaS). Benefits of Integrating AI into your Contract Lifecycle Management Cambridge MC’s Contract Management as a Service (CMaaS) 360-degree Visibility: Enable your business to gain 360-degree visibility into contracts and streamline the change management process. Real-time Data: Gain real-time performance data and granularly compare it against contractually obligated outcomes. More Control: Take control of your contracts and associated relationships with an integrated, centralised platform. Advanced meta data searches provide specific information on external risk elements, and qualitative and quantitative insights into performance. Reduces Costs: By automating manual processes, businesses can significantly reduce administrative costs associated with contract management. AI-based solutions eliminate inefficiencies in the contract lifecycle while minimising reliance on external legal counsel for routine tasks. Supplier Collaboration: Proactively drive supplier collaboration and take a data-driven approach towards managing relationships and governance process health. Enhanced Compliance: AI tools ensure that contracts adhere to internal policies and external regulations by flagging non-compliant clauses during the drafting or review stage. This proactive approach reduces the risk of costly disputes or penalties. Reduces Human Errors: In traditional contract management processes, human errors can lead to missed deadlines and hidden risks. AI-powered systems use natural language processing to identify inconsistencies or inaccuracies in contracts before they escalate into larger issues. Automates Repetitive Tasks: AI-powered tools automate time-consuming tasks such as drafting contracts, reviewing documents for errors, and extracting key terms. This frees up legal teams to focus on higher-value activities like strategic negotiations and risk assessment. We can accurately model and connect commercial information across end-to-end processes and execution systems. AI capabilities then derive and apply automated commercial intelligence (from thousands of commercial experts using those systems) to error-proof complex tasks such as searching for hidden contract risks, determining SLA calculations and performing invoice matching/approvals directly against best-in-class criteria. Contract management teams using AI tools reported an annual savings rate that is 37% higher than peers. Spending and tracking rebates, delivery terms and volume discounts can ensure that all of the savings negotiated in a sourcing cycle are based on our experience of managing complex contracts for a wide variety of customers. Our Contract Management as a Service, underpinned by AI software tooling, has already delivered tangible benefits and proven success. 8 Steps to Transition Your Organisation to AI Contract Management Implementing AI-driven contract management requires a thoughtful and structured approach to ensure seamless integration and long-term success. By following these key steps your organisation can avoid delays and costly setbacks. Step 1 Digitise Contracts and Centralise in the Cloud: Begin by converting all existing contracts into a digital format and storing them in a secure, centralised, cloud-based repository. This ensures contracts are accessible, organised, and easier to manage. A cloud-based system also facilitates real-time collaboration and allows AI to extract data from various file formats, such as PDFs and OCR-scanned images, with ease. Search for and retrieve contracts using a variety of advanced search features such as full text search, Boolean, regex, fuzzy, and more. Monitor upcoming renewal and expiration events with configurable alerts, notifications, and calendar entries. Streamline contract change management with robust version control and automatically refresh updated metadata and affected obligations. Step 2 Choose the Right AI-Powered Contract Management Software: Selecting the right software is a critical step in setting up your management system. Evaluate platforms based on their ability to meet your organisation’s unique contracting needs. Consider key factors such as data privacy and security, integration with existing systems, ease of implementation, and the accuracy of AI-generated outputs. A well-chosen platform will streamline workflows while ensuring compliance and scalability. Step 3 Understand How AI Analyses Contracts: To make the most of AI, it’s essential to understand how it processes contract data. AI systems use Natural Language Processing (NLP) to interpret and extract meaning from human-readable contract terms, while Machine Learning (ML) enables the system to continuously improve its accuracy through experience. These combined technologies allow AI to identify key clauses, conditions, and obligations, as well as extract critical data like dates, parties, and legal provisions. Training your team on these capabilities will help them to understand the system and diagnose inconsistencies. Step 4 Maintain Oversight and Validate AI Outputs: While AI can automate repetitive tasks and significantly reduce manual effort, human oversight is indispensable. Implement a thorough process for spot-checking AI-generated outputs to ensure accuracy, compliance, and alignment with organisational standards. Legal teams should review contracts processed by AI to verify the integrity of agreements and minimise risks. This collaborative approach between AI and human contract management expertise ensures confidence in the system. Step 5 Refine the Data Pool for Better Results: The quality of AI’s analysis depends heavily on the data it is trained on. Regularly refine and update your data pool by incorporating industry-relevant contract examples and removing errors or inconsistencies. A well-maintained data set enhances the precision of AI outputs, enabling the system to adapt to evolving business needs and legal standards. Step 6 Establish Frameworks for Ongoing AI Management: To ensure long-term success, set clear objectives and measurable goals for your AI contract management system. Define key performance indicators (KPIs) to track progress and prioritise features that align with your organisation’s specific requirements. Establish workflows and governance frameworks to guide the use of AI tools, ensuring consistency and accountability in contract management processes. Step 7 Train and Empower Your Teams: Equip your teams with the skills and knowledge they need to use AI tools effectively. Conduct hands-on training sessions to familiarise users with the platform’s features and functionalities. Create a feedback loop to gather insights from your team, allowing for continuous improvement of the system. Avoid change resistance by using change management methodologies, as this will foster trust in the technology and drive successful adoption. Step 8 Ensure Ethical and Secure Use of AI: Tools Promote transparency and integrity in the use of AI-driven contract management. Legal teams should have the ability to filter sensitive information, secure data within private cloud environments, and trace data back to its source when needed. By prioritising data security and ethical AI practices, organisations can build trust and mitigate potential risks. With the right tools, training, and oversight, AI can become a powerful ally in achieving operational excellence as well as reducing costs and risk. Overcoming the Technical & Human Challenges While the benefits are compelling, implementing AI in contract management comes with some unique challenges which need to be managed by your leadership and contract teams: Data Security Concerns: Uploading sensitive contracts to cloud-based platforms risks data breaches and phishing attacks. Integration Complexities: Incorporating AI tools into existing systems requires careful planning to avoid disruptions and downtime. Change Fatigue & Resistance: Training employees to use new technologies can be time-intensive and costly. There is a natural resistance to change, the dynamics of which are often overlooked and ignored, even though these risks are often a major cause of project failure. Reliance on Generic Models: Off-the-shelf AI models may not fully align with your needs without detailed customisation. To address these challenges, businesses should partner with experienced providers who specialise in delivering tailored AI-driven solutions for contract lifecycle management. Case Study 1: The CRM That Nobody Used A mid-sized company invests £50,000 in a cutting-edge Customer Relationship Management (CRM) system, hoping to streamline customer interactions, automate follow-ups, and boost sales performance. The leadership expects this software to increase efficiency and revenue. However, after six months: Sales teams continue using spreadsheets because they find the CRM complicated. Managers struggle to generate reports because the system wasn’t set up properly. Customer data is inconsistent, leading to missed opportunities. The Result: The software becomes an expensive shelf-ware — a wasted investment that adds no value because the employees never fully adopted it. Case Study 2: Using Contract Management Experts to Set Up, Customise and Provide Training If the previous company had invested in professional services alongside the software, the outcome would have been very different. A team of CMaaS experts would: Train employees to ensure adoption and confidence in using the system. Customise the software to fit business needs, eliminating frustrations. Provide ongoing support, so issues don’t lead to abandonment. Generate workflows and governance for upward communication and visibility of adherence. The Result: A fully customised CRM that significantly improves the Contract Management lifecycle, leading to: more efficient workflows, more time for the contract team to spend on higher value work, automated tasks and event notifications, and real-time analytics. With full utilisation and efficiency, the software delivers real ROI, making it a strategic investment instead of a sunk cost. Summary AI is reshaping the way organisations approach contract lifecycle management by automating processes, enhancing compliance, reducing risks, and improving visibility into contractual obligations. From data extraction to risk analysis, AI-powered tools are empowering legal teams with actionable insights while driving operational efficiency. However, successful implementation requires overcoming challenges such as data security concerns and integration complexities. By choosing the right solutions, tailored to their needs — and partnering with experts like Cambridge Management Consulting — businesses can overcome the challenges and unlock the full potential of AI-based contract management. A Summary of Key Benefits Manage the entire lifecycle of supplier management on a single integrated platform Stop value leakage: as much as 20% of Annual Contract Value (ACV) Reduce on-going governance and application support and maintenance expenses by up to 60% Deliver a higher level of service to your end-user community. Speed without compromise: accomplish more in less time with automation capabilities Smarter contracts allow you to leverage analytics while you negotiate Manage and reduce risk at every step of the contract lifecycle Up to 90% reduction in creating first drafts Reduction in CLM costs and extraction costs How we Can Help Cambridge Management Consulting stands at the forefront of delivering innovative AI-powered solutions for contract lifecycle management. With specialised teams in both AI and Contract Management, we are well-placed to design and manage your transition with minimal disruption to operations. We have already worked with many public and private organisations, during due diligence, deal negotiation, TSAs, and exit phases; rescuing millions in contract management issues. Use the contact form below to send your queries to Darren Sheppard , Senior Partner for Contract Management. Go to our Contract Management Service Page
Sun through the trees
by Scott Armstrong 26 November 2025
Nature means something different to everyone. For some, it is a dog-walk through the park; for others, it is hiking misty mountains in Scotland, swimming in turquoise waters, or exploring tropical forests in Costa Rica.
Aerial view of Westminster, London.
by Craig Cheney 25 November 2025
With the UK Budget being published tomorrow, councils are facing intense financial pressure. Rising demand for adult and children’s social care, homelessness services, and temporary accommodation has left little room for manoeuvre.
by Cambridge Management Consulting 20 November 2025
Press Release
Lightning strike in dark sky
by Scott Armstrong 17 November 2025
Non-commodity charges are driving UK energy costs higher. Discover what’s changing, why it matters, and the steps businesses should take to protect budgets | READ NOW
Futuristic building with greenery growing out of it.
by Cambridge Management Consulting 10 November 2025
Over the last few decades, carbon offsetting has become a go-to strategy for businesses looking to demonstrate sustainability commitments and enhance their external credibility. Offsetting takes many forms, from tree planting and forest conservation to providing communities with clean cookstoves and renewable energy.
Aerial view of solar panels in a green field.
by Drew Davy 7 November 2025
In today's rapidly evolving business landscape, Environmental, Social, and Governance (ESG) factors have moved from niche considerations to critical drivers of long-term value, investor confidence, and societal impact.
Two blocks of data with bottleneck inbetween
by Paul Brooker 29 October 2025
Read our article on hidden complexity and find out how shadow IT, duplicate tools and siloed buying bloat costs. See how CIOs gain a single view of IT spend to cut waste, boost compliance and unlock 5–7% annual savings | READ FULL ARTICLE
More posts